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1. Introduction

A boundary value problem for semilinear singularly perturbed parabolic PDEs with convection
is considered on a vertical strip; the highest space derivatives in the equation are multiplied by
the perturbation parameter €. When ¢ tends to zero, the solution of such a problem typically
exhibit a boundary layer. It is well known that traditional numerical methods give errors in
the solutions which grow and become comparable with the exact solution when £ become small.
That is why special numerical methods, i.e. methods for which errors are independent of the
parameter € (or in short, e-uniform, or robust, methods), are very important. At present robust
numerical methods were developed for various problems with boundary layers (see, e.g., [1, 2]).
However, for convection-diffusion problems the order of e-uniform accuracy for these numerical
methods is too low and does not exceed one. This is a main restriction to use such methods.

The defect correction method was applied in order to increase accuracy of solutions with
respect to the time variable for nonstationary singularly perturbed boundary value problems of
reaction-diffusion in [3, 4] and convection-diffusion in [5, 6].

The nonlinearity of the discrete problem requires a special approach in order to solve this
problem. Here we use such finite difference schemes, where the unknown function, which is
involved in the nonlinear term, is taken from the previous time level. The defect correction
technique, based on the results from [7] where accuracy of solutions with respect to the time and
space variables was increased for parabolic singularly perturbed convection-diffusion problems,
allows us to construct the improved schemes, whose solutions converge e-uniformly at the rate
(’)(Nl_k In* Ny —I—Z\fz_k—l—l\fo_ko)7 k=1,2,ky=1,2,3, where Ny +1 and Ng+ 1 denote the number
of mesh points in x1 and ¢ respectively, and Ng+ 1 denotes the number of mesh points in zs-axis
on the segment of unit length. The efficiency of the constructed high-order accurate schemes is
illustrated by adequate numerical experiments.

2. The studied class of initial boundary value problems

On the domain G = D x (0,T], D = (0,1) x IR with the boundary S = G \ G we consider the

following singularly perturbed parabolic equation ' :

Ligqy (u(z,t)) = 0, (z,1) € G, (2.1a)
w(z,t) = p(z,t), (x,t)€S. (2.1b)

*This research was supported in part by the Dutch Research Organisation NWO under grant No. 047.016.008
and by the Russian Foundation for Basic Research under grant No. 04-01-00578.
! The notation is such that the operator L(q.5) 1s first introduced in equation (a.b).
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Here Loy (u,0)) = LG ule, 6) + LY (u(e, 1)),
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For S = SoUS”, we distinguish the lateral boundary S¥= {(z,#): z; =0o0rz; =1,0<t < T}
and the initial boundary So = {(2,t): 2 € [0,1] x IR, t = 0}. In (2.1) a,(z,t), bs(z,t), c(z,t),
p(z,t), (z,1) € G, g(z,t,u), (x,t, u) € G x IR and ¢(x,t), (z,t) € S are sufficiently smooth and
bounded functions satisfying as(x,t) > ag > 0, bi(z,t), |b2(2,t)] > bop >0, p(z,t) > po >0,

c(z,t) >0, (2,t) € G, ‘g gz, t,u)| <g° (z,t,u) € GxIR; s=1,2. The perturbation
u

parameter £ may take any values from (0, 1]. When ¢ tends to zero, the solution exhibits a regular
boundary layer in a neighbourhood of the outflow boundary ST = {(z,t): 2, =0, 0 <t < T}.

3. The c-uniformly convergent scheme

Here we discuss an e-uniformly convergent method for problem (2.1) by taking a special mesh
condensed in the neighbourhood of the boundary layer. The way to construct the mesh is the
same as in [1]-[7]. More specifically, we take

@h = 51(0') X Wy X Wo s (31&)

where @y and wy are uniform meshes on [0, 7] and in the zy-axis with step-sizes 7 = T'/Ny and
ho = 1\72_1 respectively, and @; = @y (o) is a special piecewise uniform mesh of nodal points, xi,
n [0, 1], depending on the parameter o € IR which depends on ¢ and Ny; Ny and Ny are the
numbers of intervals in the meshes w and @y respectively, and N5 is the number of intervals on
a unit segment in the zg-axis. We choose

0 =0z.1)(e, N1) = min {1/2, m~leln Ny}, (3.1b)

where m is an arbitrary number from the interval (0, mo), mo = ming [a] ' (2,t) b1(2,t)]. The
mesh @ (o) is constructed as follows. The interval [0, 1] is divided in two parts [0, U], [0, 1],
o < 1/2. In each part we use a uniform mesh, with N;/2 subintervals in [0, 0] and [0, 1]. We
define hZ = $21+1 — a2y, hy = max; hl7 hy < ZM/Nl7 Gr=GNnG, Sy, =5NG.

For problem (2.1) we use the difference scheme [8]
A(3.2) (2(2,0)) =0, (2,8) € Gy, 2(x,t) = (1), (2,1) € Sp. (3.2)

Hete Gy = G NGy, Si=S505h, A (2(2,1)) = Ay (e, 8) + Al (2(x,1)),

ADye(et) = {2 [aa(e,t) b + a0, 0) buymz |+ ba(o,1) B, +

[0 (2,8) 8y + b5 (2,8) bz5] — e(e,1) = pla, )37} 2(e, ),

ALy, (2(2, 1))

. —g(x,t, z(x,1t)), (x,t) € G,

5ﬁﬁz(x,t) = Q(hi_l—l-hl) Op 2(x,t) — bz z(2,t))), dzrz(a,t)) = (hi_l)_l (z(x,t) —
Z(xll_17x,27t))7 5$1Z($ t) ( ) I(Z( e y L2y )_Z(xvt))v 5?Z($7t) :T_l(z(xvt)_z(xvt_T))v

x = (x},x2); operators 0,,z(z,) and dzz z(x,t) are defined by a similar way; 0, z(z,?)



and 0z z(x,t), d;z(z,t) are the forward and backward differences, and the difference opera-
tors &z z(z,t) and 8,27 2(7,t) are approximations of the operators (9%/0x1)u(z,t) and
(0%/0x3)u(z,t), Sp2752(x,t) is the second difference derivative with respect to x5 on an uni-
form mesh; bF (x,¢) = 271 (bs(,t) + |bs(,0)|), b5 (2,t) = 271 (bs(x,t) — |bs(a,0)]), s = 1, 2.

For the one-dimensional problem in [5] the theorem is given which states that the discrete
solution of the linear convection-diffusion problem converges e-uniformly. Using the same tech-
nique as in [5], we justify that the solution of (3.2), (3.1) converges e-uniformly to the solution
of (2.1) and the following error estimate holds:

|u(z,t) = 2(z,t)| < M[N7'InN+ Ny + N7, (2,t) € Gy, (3.3)

i.e. the convergence order of such a scheme does not exceed 1.

4. High-order schemes based on defect correction

Defect correction techniques proved to be efficient for constructing s-uniformly convergent
schemes of high-order accuracy for singularly perturbed parabolic linear problems (see, e.g.,
[3-7]). Therefore, this technique seems attractive to be used also for the construction of high-
order accurate schemes in = and t for semilinear problems under consideration.

The idea of the defect correction method is the following. For the difference scheme (3.2),
(3.1) the error in the approximation of the partial derivative (0/0t) u(z,t) is caused by the
divided difference d; z(x,t) and is associated with the truncation error given by

du I*u , Pu
5 —(x,t) — Su(a, t)=2" 1TW($ ty—6"1r 503 —(z,t—0), 0€]0,7].
The truncation error for the §,, z(x,t) is defined by the formula
0 9 . .
8—;1(36,0 — 8y u(z, ) =—2"10) —— 1527 u(zy + 61, 29,t), 01 €[0,h]], 2 =27,

and similar formulae can be written out for the differences é,,2(z, ) and éz=(2,t). Therefore,
for the approximation of (9/0t)u(x,t) we now use the expression dyu(z,t) + 7ozu(x,t)/2, where
dgu(z,t) = dzu(x,t — 1), dzu(z, t) is the second central divided difference, and for the approx-
imation of (9/0z,)u(z,t) we use the relation &, u(z,t) — hidmgmu(z,t)/2 for s = 1 and the
relations 6,,u(x,t) — hody, mu(,t) /2, dzzu(x,t) + hody, mu(z,t)/2 for s = 2. We can evaluate
a better approximation than (3.2) by defect correction
2 2
Ay (z(2, 1) = 27 7 pla, t >gg<x 0427 b ) = (@ t), 2 =al,
i

where z € wy X wy and t € Wy, 2°(z,t) is the “corrected” solution. Instead of (0?/9t?) u(x,t)
and (9%/02%) u(x,t), (0*/023) u(z,t), we will use o z(2,t) and dpzs 2(2, 1), Opyzy 2(2, 1), Te-
spectively, where z(z,t), (v,t) € G}, is the solution of the difference scheme (3.2), (3.1).

For fized values of ¢, the new solution z°(z,t) has a consistency error with respect to z and
t of order (’)(Nz_2 + N1_2 In? Ny + NO_Z). As we shall see further in the case of special piecewise
uniform meshes (3.1) the order of e-uniform convergence with respect to the variables z and ¢
is (’)(Nl_2 In? N, + 1\72_2 + NO_Z). In a similar way we can construct a difference approximation
with a convergence order higher than two with respect to the variables 24 and ¢ e-uniformly (see
similar results for one-dimensional linear problems in [3]-[7]).

5. Schemes with improved convergence in time and space

5.1. On the mesh G, we write the finite difference scheme (3.2) in the form

Ap.2) (z(l)(x,t)) =0, (z,t)eGp, W, t)=p(x,1), (x,t) €S (5.1)

3



where 2(1)(z,t) is the uncorrected solution. We define this scheme as the base scheme. Further
we denote by §,7z(z,t) the backward difference of order k:

67 2(x, ) = (Op_y7 2(2,t) = 6_q7 2(x,t — 7)) /7, t> kT, k>1;
z(z,t), (x,t) € G).

50? Z($7 t)

Using the idea from the previous section, we approximate boundary value problem (2.1) by
the discrete problem

A(3.2) (2[272]($7 t)) = ¢[l]($7 t) + ¢(1)($7 t)v ($7 t) € Gp, (52)
A2 1) = o(at), (x,1) €Sy
Here ) 52
2- L u(e,0),  t=
o= {2 PO T 0 " e ean

27 p(a, t) 78,720 (2, t), ¢ >2r

(@) =278 (R bi(2, 1) S 4 ho [0F (2,8) = b3 (2, 8)] uyzs] 2D (1), (2,t) € G

We call 222(z,t), (z,t) € G} the solution of scheme (5.2),(5.1),(3.1). As opposed to mesh
(3.1), for scheme (5.2), (5.1) we will use the special mesh

G = Gh(?).la)v (5.3a)
where @01 = Wy (5.14)(0) but under the different condition (as compared with (3.1b))
0 = 0(53)(, N) = min{1/2, Im™'eIn Ny}, (5.3b)

m = mz.y), | > 3 is an arbitrary number.
For simplicity, we suppose

as(x,t) = az(x), by(z,t) = by(z), (z,t) €G, ¢(z,t)=0, (z,t)€ Sy, s=1,2. (5.4)
Under condition (5.4) we have the e-uniform estimate for the solution of problem (5.2), (5.3)
lu(z,t) — 22z )] < M [NT2In2 Ny 4+ N2+ NJ2 L (2,t) € Gy (5.5)

5.2.In order to find a solution of the finite difference scheme (3.2), (3.1) (scheme (5.2), (5.3)),
it is required to solve a nonlinear discrete equation on each time level. It would be attractive
to use such finite difference schemes, where the unknown function, which is involved in the
nonlinear term, is taken from the previous time level [8]. Let us give such a scheme.

On mesh (3.1), for problem (2.1) we use the finite difference scheme

A (z(@,1) = AR () + ALy (B(2,)) =0, (2,1) € Gy, (5.6)
z(x,t) = ez, t), (x,t) € S

Here Aggg) (2(x,t)) = —g(x,t, 2(x,t — 7)), (2,t) € Gy, For solutions of the finite difference
scheme (5.6), (3.1) we have the estimate

lu(z,t) — z(z,t) | < M [N7'In N+ NU+ NG (2,t) € G,



Let 2 (z,t), (x,t) € G, be a solution of the finite difference scheme (5.6), (3.1). Then we
find the function z122(z,t), (z,t) € Gh(5.3)7 by solving the discrete problem

A(5.6) (2[272]($7t)) = ¢[1]($7t) + ¢(1)($7t)7 ($7t) € Gp, (57&)
LA ) = pet), (20) €Sy
Here
¥l(e, 1) = B, (@, 20 (@ 1)), (5.7b)
2
T [2_1p(x,t)%u(x, 0) — %g(x,t, u(z, 0))%u(9€, 0)] . t=r1
Wz, t) = ; (@,1) € G

T {2_1p($,t)52¥2’(1)($7t) - %g($7t7Z(l)($7t))5;2(1)($,t)] ’ t>2r1

2 (z,t) in (5.7) is the solution of problem (5.6), (3.1). We call the function 2[22(z,¢), (2,1) €
G}, the solution of the difference scheme (5.7), (5.6), (3.1).

For the solution of the difference scheme (5.7), (5.6), (5.3) we have the following estimate,
which is similar to estimate (5.5):

u(x,t) — 2[2’2](x,t)‘ < M [N7PIn2 Ny + N2+ Ng?L o (a,t) € Gh.
The approach, based on the defect correction, allow us to construct a discrete solution

convergent e-uniformly at the rate O(N;2 In2 Ny + Ny % + N;%), where &, ko > 2.

6. Numerical results

We find the solution of the following boundary value problem

— 9,0 9 _ _
Loate.t) = {e+ - G lun —glotuwe ) =0, (002G o

u($7t) = 99($,t), ($7t) € 5.

Here G =GUS, Dx (0, 7], D=1(0,1), glz,t,u) = golz,t,u) = —folz,t) + a fi(t,u),
(z,t,u) € G x R, « takes the value 0 or 1; fo(o,t) = 12eta® +4ta® — 2t — 54,
fl(tvu) = 1+t5u4 )

u(0,t) =+t +1°, u(l,t)=a+t+t°, 0<t<T=1; u(z,0) =, 0<a<l.
The solution of this problem is singular. When a = 0, the solution of problem (6.1) is linear;
such a problem was considered in [7]. The analytical solution of problem (6.1) used for the

computation of the errors in the approximate solution is unknown. We find the maximum
pointwise errors E(N, No, ) for the functions 20 (z,t) and 222(z,t) by the formulae

E(N,No,e) = max | 2" (2, 1) —u*(x,1) |, (6.2)
(l’,t)EGh
E(N,No,¢) = max 2[2’2](x,t)—u**(x,t)‘. (6.3)

(l’,t) € @h

Here u*(z,t) and u**(=, ) are linear interpolants obtained from the reference solution u2°4¥(z, ¢)
corresponding to the numerical solution z(l)(w,t) and 2[2’2]($,t) for N = Ny = 2048, N = 2%
1 =2,3,...,10, No = 2/, j = 2,3,...,10. We calculate the ratios of the maximum pointwise

errors for the functions z(V)(z,#) and 2[2%(z, ) as follows

FZ] (Q_IN)

9 ] = (1)7 [27 2]7 Where FZJ (N) — max E(N7 N07€)7



and give them in Table 1. We can see from the table that the order of convergence is almost
one for the function () (z,t) and almost two for the function 222 (z,¢), which corresponds to
the theoretical results (see estimates (3.3) and (5.5)).

Table 1: Ratios of the maximum pointwise errors for the functions () and z[2:2]

N 8 16 32 64 128 256 512 1024
R, 1) (N) .73 170 1.71 1.71 1.73 1.78 1.80 1.82
R, 221(N) | 2.58 2.97 3.14 2.85 2.93 3.06 3.16 3.13

Conclusion

1. In this paper we have shown theoretically that the use of a defect correction technique for
solving a boundary value problem in the case of a semilinear singularly perturbed parabolic
convection-diffusion equation allows us to construct effectively e-uniformly convergent schemes
with the second (up to a logarithmic factor) order of accuracy with respect to z; and with the
second order of accuracy with respect to x5 and t.

2. The numerical example is given where it is shown that for the improved scheme the rate
of convergence with respect to the space and time variables is corresponding to the theoretical
results.
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